中国VR彩票科大在蛋白质从头设计方法研究中取得重要进展
刘海燕教授、陈泉教授团队长期致力于发展数据驱动的蛋白质设计方法。在前期工作中,建立并实验验证了利用神经网络能量函数从头设计主链结构的SCUBA模型(Nature2022),本文报道的SCUBA-D(SCUBA-diffusion)模型,是基于深度学习的主链设计算法的迭代升级。SCUBA-D能够基于不同输入执行多类蛋白质结构设计任务(图1a)。在模型设计上,通过在扩散模型训练中引入对抗损失(adversarial loss)(图1b),避免生成模型产生物理上不可行的结构,实现了高成功率的主链结构设计。由于没有使用已有结构预测网络作为预训练降噪网络,SCUBA-D能够在设计中避免对已知天然结构的过度偏好,可发现已有模型在可设计蛋白质结构空间中的盲区。
图1. 用SCUBA-D模型进行蛋白质主链设计的原理。(a)SCUBA-D可基于噪声或者用户定义的结构草图设计新主链结构,也可以基于给定的含功能位点的局部结构设计新的完整主链。(b)包含对抗损失函数的SCUBA-D模型架构。
团队对SCUBA-D在多类蛋白质从头设计任务中的应用进行了实验验证。针对单体结构从头设计任务,团队对共计70条设计序列进行了实验表征,其中近80%的序列(53条)可溶表达,实验解析的16个高分辨晶体结构与目标结构高度一致(主链原子位置均方根位移在0.96到2.11 Å之间)。在小分子结合蛋白设计任务中,团队对非经典血红素降解酶进行了保留结合位点的主链结构重设计,对设计的12条序列进行实验验证,其中5条具有与血红素的结合能力,三条序列与血红素的亲和力与天然蛋白相当或高于天然蛋白。在结合蛋白设计任务中,30个人工设计的Ras结合蛋白14个与Ras有相互作用,其中3个设计蛋白与Ras的结合亲和力与天然蛋白相当,复合物晶体结构更进一步验证了设计的精确度。
中国科大生命科学与医学部刘海燕教授、陈泉教授为该论文通讯作者;生命科学与医学部博士生刘宇枫、王晟为该论文共同第一作者,论文合作者包括来自科大讯飞和元构生物等企业的研究人员。该研究工作得到了科技部、国家自然科学基金委、中国科学院等多项基金资助支持。
(生命科学与医学部、微尺度物质科学国家研究中心、细胞动力学教育部重点实验室、科研部)
扫一扫关注微信公众帐号